ENTITY RELATIONSHIP MODEL Sep 2023

Databases Model the Real World

- "Data Model" translates real world things into structures computers can store
- Many models:
 - Relational, E-R, O-O, Network, Hierarchical, etc.
- Relational (more next time)
 - Rows & Columns
 - Keys & Foreign Keys to link Relations

Enrolle				Student				
d sid	cid	grade		Sid	name	login	age	gpa
53666	Carnatic101	C —	\rightarrow	53666	Jones	jones@cs	18	3.4
53666	Reggae203	B		53688	Smith	smith@eecs	18	3.2
53650	Topology112	A —	$ \longrightarrow $	53650	Smith	smith@math	19	3.8
53666	History105	B						

Problems with Relational Model

CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2))

CREATE TABLE Students (sid CHAR(20), name CHAR(20), login CHAR(10), age INTEGER, gpa FLOAT)

With complicated schemas, it may be hard for a person to understand the structure from the data definition.

		_					
grade	sid	Student					
C	53666		<mark>s</mark> sid	name	login	age	gpa
B	53666		53666	Jones	jones@cs	18	3.4
A	53650		53688	Smith	smith@eecs	18	3.2
B	53666	\rightarrow	53650	Smith	smith@math	19	3.8
	grade C B A B	grade sid C 53666 B 53666 A 53650 B 53666	grade sid C 53666 B 53666 A 53650 B 53666	grade sid Stude C 53666 53666 B 53666 53688 A 53666 53650 B 53666 53650	grade sid Student C 53666 sid name B 53666 53666 Jones A 53650 53650 Smith B 53666 Smith	gradesidStudentC53666sidsidnameloginB5366653666Jonesjones@csB5366653650Smithsmith@eecsB53666Smithsmith@math	gradesidStudentC53666sidsidnameloginageB5366653666Jonesjones@cs18A5365053688Smithsmith@eecs185366653650Smithsmith@eecs19

One Solution: The E-R Model

- Instead of relations, it has:
 - Entities and Relationships
- These are described with diagrams
 - both structure, notation more obvious to humans

Steps in Database Design

Requirements Analysis

• user needs; what must database do?

Conceptual Design

- high level descr (often done w/ER model)
- Logical Design
 - translate ER into DBMS data model

Schema Refinement

• consistency, normalization

Physical Design

indexes, disk layout

• Security Design

who accesses what, and how

ER Model Basics

• Entity:

- Real-world thing, distinguishable from other objects.
- Noun phrase (e.g., Bob Smith, Comm Ave Branch, Account 1234, etc)
- Entity described by set of attributes.

• *Entity Set*: A collection of similar entities. E.g., all employees.

- All entities in an entity set have the same set of attributes. (Until we consider hierarchies, anyway!)
- Each attribute has a *domain*.

ER Model Basics (Contd.)

- Relationship: Association among two or more entities. E.g., Bob Smith works in Pharmacy department.
 - relationships can have their own attributes.
 - Verb phrases (e.g., works_at, enrolled_in, etc)

Sample E-R Diagram

E/R Data Model

Design Issue #3: Relationship Cardinalities

• Cardinalities of Borrows:

Туре	Illustrated	Multiple Loans?	Joint Loans?	
One-to-One (1:1)	Borr	No	No	
Many-to-one (n:1)	Borr	No	Yes	
One-to-many (1:n)	Borr	Yes	No	
Many-to-many (n:m)	Borr	Yes	Yes	

Generalization

• Generalization is a bottom-up approach in which two lower level entities combines to form a higher level entity. In generalization, the higher level entity can also combine with other lower level entity to make further higher level of entity.

Specialization

 specialization is opposite to generalization. It is a top-down approach in which one higher level entity can be broken down into two lower level entity. In specialization, some higher level entities may not have lower-level entity set at all.

A Cadastral E-R Diagram

Assignmet On Entity-Relationship Diagram

A **university** consists of several **faculties**. Within each faculty there are several departments. Each department may run a number of courses. All teaching staff are attached to departments, each staff member belonging to a unique department. (Note: see how many meanings you can assign to this ambiguous sentence). Every course is composed of subcourses. Some subcourses are part of more than one course. Staff may teach on many subcourses and each subcourse may be taught by a number of staff. Draw an entity-relationship model for this example. Show both cardinalities and optionalities. Put a question mark where the degree is not clear from the text. Don't assume anything; rather, write a list of questions you would have to find answers to to complete the model.

ER DIAGRAM : MCTE

Entities : Identify The Entities	Relationship	Relationships With	Optionality	Cardinality	Derived Field	Fields	
Faculty	Includes	Departments	Can faculty exist without any dept ? NO	How many depts ? many		Faculty name, depts	
Department	Runs	Courses	Can a dept exist without running a course ??????	How many course ? many		dept_name courses ,	
	Has attached	Teaching staff	Is it a must that a teaching staff is att NO	How many teachers ? many		teaching staff attached staff duration of att	
	Has on Roll	Teaching Staff	Should a teacher be on roll of a dept ? YES	How many teachers ? Many			
	Belongs	faculty	Should a dept belong to a faculty ? YES	Can belong to how many faculties ? one			
Courses	Composed of	Sub courses	Should a course always have a subcourse YES	How many subcourses ? many		Course id, course_name, duration, sub_courses	
Sub courses	Part of	courses	Should a sub course be always part of a course ? YES	How many courses can it be part of ? Many		Sub_course_name, course_name, taught by, no of pds,	
	Taught by	Teaching staff	A subcourse always need a teacher ? YES	Taught by how many teachers ? many			
Teaching staff	Teaches	Sub courses	Can there be a teacher who is not teaching any sub course ? YES	Teach how many sub courses ? many		Staffid, name,sub_courses,	
	Belongs	department	Does every teacher belong to a dept ? YES	Can belong to how many dept? one		parent_dept,	
		Attached to	Is every teacher attached to a dept ? YES	Can be attached to how many depts ? ????.	Attachment duration		

Questions to be asked

1. What are the Entities ?

University, Faculty, departments, Courses, sub courses, Teachers, Attached Teachers.....

2. How are they related ?

Faculties have departments
Departments run courses
Courses are composed of sub courses
Departments have teachers on Roll
Departments have teachers attached.

3 What are the optionality for each relationship (required or optional) **?**

4. What are the cardinality for each relationship ? 1-1 , 1-many, many- 1 or many to many.?

5. Identify attributes for each entity or relation .

